
7$y

L. -

ANNUAL REPORT

U VOLUME1

TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY

I REPORT NO. AR-0142-90-001 K T , C

J July 22.1 \, AUG 0 31990

InN
I GUIDANCE, NAVIGATION AND CONTROL J

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142

I Sponsored By
The United States Army Strategic Defense Command

I
COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

3 Contract Data Requirements List Item A005

Period Covered: FY 90

Type Report: Annual

--- "*; .I . l *

-- --'.----- -F) , -~ re leclel
| I

U.

I
I

I ANNUAL REPORT

VOLUME1

TASK 1 DIGITAL EMULATION TECHNOLOGY LABORATORYI
i

July 22. 1990

I Author

Tho; ,as R. Collins, Stephen R. Wachtel

3 COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

I Atlanta, Georgia 30332 - 0540

!
I Eugene L. Sanders Cecil 0. Alford

USASDC Georgia Tech

Contract Monitor Project Director

Copyright 1990

Georgia Tech Research Corporation

Centennial Research Building

I Atlanta, Georgia 30332

I
!

DISCLAIMER

I
DISCLAIMER STATEMENT - The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be
construed as an of icial Department of the Army position, policy, or
decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

(1) DISTRIBUTION STATEMENT - Approved for public release;
distribution is unlimited.

(2) This material may be reproduced by or for the U.S. Government
pursuant to the copright license under the clause at DFARS 252.2273 - 7013, October 1988.

U

DA

I

II I' !

I l' c

I
I

13
1. Introduction

This report addresses the objectives, requirements, and schedule of the Digital Emulation
Technology Laboratory (DETL),. relative to contract number DASG60-89-C-0142. An
associated report, "DETL Simulation Software (Old Contract)", covers DETL relative to
contract number DASG60-85-C-0041. The major distinction between these two contracts and
their associated activity at DETL is that this newer contract concerns primarily activity associated
with the effort to develop an integrated hardware and software environment for end-to-end
simulations of exoatmospheric interceptors such as EXOSIM. This includes the Georgia Tech
Parallel Function Processor (PFP), system software for the PFP (utilities and parallel
programming tools), and application software (EXOSIM). Some discussion of interfaces to
specialized external hardware like the Seeker Signal Emulator (SSE) will also be included.

I 1.1. Objectives

Within DETL, here are two main hardware systems: the Parallel Function Processor (PFP) and
the Seeker Sceile Emulator (SSE). Each of these systems is a complex parallel processor, and
they are designed to function together as an emulation facility for kinetic energy weapons
systems. Software development is also an active area of research, both at the system level
(compilers, loaders, graphics development) and at the application level (simulation and emulation
studies).

I The principal objectives of DETL are as follows:

Provide facilities for 6-DOF KEW emulation

, Provide real-time capability in excess of 2000 Hz,

I ,- Provide real-time emulation of IR FPA seekers

Test and verify GN&C software and hardware systems. .

- Educate new PFP users and provide technical support -

3 The major components used in meeting these objectives include the PFP, SSE, high-speed 3-D
graphics workstation, and associated conventional computers for basic support functions. Not
all of these components are required for every task. For example, much of our work consists of
running simulations (sometimes real-time, sometimes not) on the PFP, with no attached
systems. This limited mode of operation is capable of verifying missile simulation models and3 control laws, as well as many types of signal processing.

To provide realistic imagery in real-time, however, the Seeker Scene Emulator is required. This

system generates image data as though it were coming directly off of the elements of a focal-
plane array, with the scene information dctermined by the relative location of the simulated
missile system to the targets and decoys. Actual flight hardware may be tested within thisI

U

I4
system. By equipping the hardware with appropriate interfaces to the PFP, the simulated5 functions of the GN&C Processor can migrate from the PFP to the actual hardware.

1.1.1. GN&C Test and Evaluation -- EXOSIM

3 The principle objective of DETL has always been to provide a facility in which guidance,
navigation, and control algorithms can be run at high speeds in order to assess their performance.
Recently, this has been served by implementing EXOSIM in various forms. EXOSIM is a
simulation of a representative exoatmospheric interceptor (ERIS baseline) which has evolved
from several earlier simulations, including KWEST and KEERIS. Unlike KWEST, which was
written in a combination of ACSL and FORTRAN, EXOSIM is written entirely in FORTRAN.
Unfortunately, the programming model for EXOSIM was not especially suited for a parallel
implementation, since it utilized an event-driven structure. This technique is often used to
enhance the performance of discrete-event simulations on single-processor systems, since it
eliminates the need to model small increments of time in which essentially nothing changes. For
a continuous system, however, there is little advantage in using an event-driven structure.

I One of the subcontractors for this work (Dynctics) modified Version 1.0 of EXOSIM, changing
it from an event-driven structure to a time-driven structure. At the same time, it was made into
an unclassified version by replacing the data set and changing two routines. It is this modified
version of EXOSIM that has been implemented at DETL. We generated a set of guidelines for
partitioning FORTRAN code on the PFP and described a means of testing the partitions on a
single-processor system. Following these guidelines, Dynetics first produced a first-stage boost
version of the modified EXOSIM, partitioned for four processors. This program is called
BOOSTI. They then produced a first/second-stage boost version (BOOST2), partitioned for five
processors. Both of these programs ran correctly on the PFP, requiring only a simple procedure
of splitting up the main program along documented partitions and adding the appropriate

3communication instructions (which is an automated process).

BOOST2 has subsequently been altered at DETL in order to extract more parallelism, thus using
more processors. At this time, a version runs on ? processors at a speed of ? times real time
(slower than real time by that factor).

1.1.2. Education and Technical Support

Three major activities have taken place with regard to PFP education and technical support.
First, a class was held in December 1989 in which seven students were taught the basics of PFP
technology. The students were employees of USASDC and its contractors. The class included
material on parallel processing fundamentals, the PFP model of parallelism, PFP hardware, the
host operating system, and typical applications. Approximately half of the time was used for

hands-on experience with the PRP.

The second support activity was the production of the PFP Technical Data Package. Our
principle contribution to this effort was the software documentation (both system software and
programming tools), as well as hardware documentation of recent modifications that were made3 to support the expanded memory and increased functionality of the current PFP host.

I

I
1 5

Finally, we have recently begun to organize a technical committee, the Parallel Simulation
Technology Working Group. This group will include members from SDC-affiliated companies
who will meet to discuss simulation techniques, general parallel programming topics, PFP issues,
and ongoing SDC simulation work. The first meeting is tentatively scheduled for August 1990.

3 1.2. Schedules and milestones

As of July 1990, there are three 32-processor PFP systems available. One of these is currently
undergoing a transition from an earlier configuration to our latest 3-processor-rack configuration,
with 386-based processors to replace the original 286-based processors. The other two systems
are the 286-based machine allocated for KDEC and the FPP-based machine for internal
development of FPP/Sun host software. Not included in these 3 PFPs are a limited test PFP
system and the prototype Multibus II PFP system. Since last year, we have taken our older
8086-based PFP out of service.

The FPP-based PFP and the KDEC PFP both include the basic packaging and power supplies to
support expansion to 64-processor capability. The 386-based PFP may eventually be paired with
the Multibus II PFP to produce a 64-processor hybrid system.

The major milestones completed over the period of this report are as follows:

- Integration of 386/12 processors into PFP, making the 286/12 processors available
for the KDEC PFP,

- Transition to a new host operating system (RMX II), allowing greater memory
accessibility, virtual terminal support, and other features,

- Development of utility software on the new system, replacing (and enhancing)3 basic functions for loading and starting programs,

- Development of programming tools for the new system, including a "make" utility
j for application maintenance,

- Development of parallel-processing support utilities, including one that analyzes
variable usage across partitions and one that automatically generates

communication calls,

- Development of libraries of communication procedures for processor-processor
and processor-host interaction, providing uniform interfaces across several
languages (C, Fortran, Pascal, and PL/M),

I - Design and development of a new "piggyback" board to provide crossbar
communcation capability to the 386/12 boards through their iSBX interfaces,

I Design modifications to the Multibus Repeater boards to support expanded
memory accessibility (16 MBytes per rack, over 48 MBytes per 32-processor

3system),

I

I
!6

- Design modifications to the 286/12 processors to make them completely
interchangeable with 386/12 boards in the new, expanded-memory
configuration,

ft - System-level repackaging (racks, power supplies, cabling),

- Presentation of onsite education in PFP programming,

- Hardware and software documentation for the PIP Technical Data Package,

- Definition of basic rules for developing parallel applications in FORTRAN and in
ACSL on conventional single-processor systems,

- Application of these rules in versions of EXOSIM by Dynetics, followed by
successful porting of 4- and 5-processor versions to the PFP.

The most significant causes for delays during the past year have been

- The forced conversion to a more sophisticated operating system with associated
hardware support for greater memory addressibility,

- Incompatiblity between new floating-point coprocessors and the original 80387
devices,

- Fortran compiler bugs, and

- Loss of support from subcontractor (Dynetics).

The first item above arose mainly from the complexity of EXOSIM, but it has had beneficial side3 effects. The coprocessor and compiler problems were basically just unforeseen technical
problems. These first three items caused only temporary delays can now be considered to be
closed issues with no long-term impact to our schedule. The last item (loss of support from5 Dynetics) came about from a lack of funding. This is the major reason that we have not

progressed beyond a second-stage implementation of EXOSIM, and it has impacted our
3 schedule.

During the coming year, the highest priority will be placed on the optimal use of these
technologies in simulation applications such as EXOSIM. The schedule for this effort is shown
in Figure 1.1, and the individual milestones are described in Figure 1.2. The implementation
dates for midcourse and end-to-end EXOSIM have changed from earlier estimates because of the
reasons stated above. Dates for LEAP and GBI implementation are estimates and assume that
these simulations are available to be ported to the PFP.

I
I
|

CO)

1444

141

* >4

r1 4 C i) 4

I 0

AII

I M00

14 O, 14

17
Figure 1.2 Task 1 Milestones

1. EXOSIM Version 1.0 boost phase installed and running on PFP with Seeker Emulator
(Simple Target Model)

2. EXOSIM version 1.0 midcourse installed as supplied by other Government Contractor

5 3. EXOSIM Version 1.0 end-to-end available

4. EXOSIM Version 1.0 end-to-end installed and running on upgraded PFP

£ 5. Draper Laboratory IMU Electronics Test Plan Complete

3 6. IMU Electronics Testing

7. IMU Test Report Complete

8. AHAT Processor Test Plan Complete

3 9. AHAT Processor Testing

10. AHAT Test Report Complete

1 11. LEAP 6-DOF Available

12. LEAP 6-DOF Installed

13. LEAP 6-DOF Running

3 14. GBI 6-DOF Available

g 15. GBI 6-DOF Installed

16. GBI 6-DOF RunningU

I
I

I

2. PFP Development Tools

2.1. Introduction

The PFP development tools consist of a collection of programs developed at the Georgia Institute
of Technology. These tools, which execute on a Intel 310AP computer running iRMX II, assist
the user in controlling the PFP hardware. Refer to Appendix ? for the source code listings for
each program.

* 2.2. Reset

The reset program is used to reset the PFP hardware. Reset writes to an i/o port which causes the
PFP to perform a hardware reset on the crossbar/sequencer and all processing elements. The
command line syntax is:

reset

12.3. Download

SThe download program is used to download programs into the appropriate elements on the PFP.
Download uses the first and second fields of each line in the input file to determine which
elements to download and with which programs to download into the elements. The command
line syntax is:

w e download <process.txt>

where:

<process.txt> = input file name.

2.4. Start

SThe start program is used to start the appropriate elements on the PFP. Start uses the first field of
each line in the input file to determine which elements to start. The command line syntax is:

3 start <process.txt>

where:3ee<process.txt> = input file name.

2.5. loserve

The ioserve program is designed to handle any input or output between the host processor and
any of the target processors. loserve uses the input file to determine whether or not a processing
element will need any input by examining the third field in each line of the input file and whether
or not a processing element will produce any output by examining the fourth field in each line ofu the input file. The command line syntax is:

I

I

ioserve <process.txt> <timeout>

3 where:
<process.txt> = input file name.

f <timeout> = integer timeout count.

If the third field contains a character string other than '<NULL>' the string is assumed to be the
name of the input Me associated with that processing element. If the fourth field contains a
character string other than '<NULL>' the string is assumed to be the name of the output file
associated with that processing element. Since neither the crossbar nor sequencer support input
and output, the third and fourth fields in the input file for these elements always containsI '<NULL> '.

3 If the third field of the input file indicates a processing element requires input, ioserve will open
the input file, read the data, and send it to the processing element at the beginning of the
execution. If the fourth field of the input file contains a file name, ioserve writes the output from
the processing element to that file. The output is always written to the terminal whether or not an
output file is designated.

Each processing element can have unique input and output files or a combination of shared input
and output files. If an input file is shared, each of the processing elements sharing the file should
expect the same data as input. If an output file is shared, the output from all of those processing
elements will be intermixed in the output file as it is processed by ioserve. Since this is a parallel
environment, care will need to be taken when generating output as the order of the output can not

i be guaranteed.

loserve in turn scans the data available port for each of the active processing elements by opening
the shared memory window to the processor and checking the appropriate flag. When data is
available, ioserve retrieves the data and writes it to the designated output. If no data is available,
ioserve closes the window and proceeds onto the next processing element. loserve retrieves data
from a processing element until the source is exhausted. The second parameter on the command
line is an integer timeout count in seconds. loserve scans the active processing elements for
output until there has been no output for the specified number of seconds and then ioserve

* terminates.

2.6. Make

Make was originally developed as a project control tool for the UNIX operating system. In
UNIX, as in iRMX, most programs are composed of many small source modules that need to be
combined together to produce an executable module. Without a utility such as make, it would be
necessary for the programmer to keep track of all object modules which might need to be
regenerated due to changes in source files. The make program provides an easy way to automate

this process. The command line syntax is:

gmake <makefile>

I

I

where:
<makefile> = input file name.

Make reads commands from a user-defined "makefile" that lists the files to be created, the
commands that create them, and the files from which they are created. When you direct make to
create a program, it makes sure that each file on which the program depends is up to date, then
creates the program by executing the given commands. If a file is not up to date, make updates it

before creating the program by executing explicitly given commands or one of the many built-in
commands.

I
I
I
I

I
i
I
I
I
I
3
I

I

3. PFP Diagnostic Tools

3.1. Introduction

3 The PFP diagnostic tools consist of a collection of programs developed at the Georgia Institute of
Technology. These tools, which execute on a Intel 310AP computer running iRMX II, assist the£ user in diagnosing the PFP. Refer to Appendix ? for the source code listings for each program.

3.2. Mtest

3 The mtest program is used to test processor, crossbar or sequencer memory to determine whether
its working correctly. The command line syntax is:

3 mtest <name> <offset> <length> <test>

where:
<name> = processor, crossbar or sequencer name.

<offset> = hexadecimal memory offset.

<length> = hexadecimal memory length.

3 <test> = simple PATTERN test or complex RANDOM test.

The pattern test purpose is to determine whether each memory byte can correctly turn on and off.IThis test uses four steps:

1) write OOH into each byte and then read back to verify correctness.

£ 2) write 55H into each byte and then read back to verify correctness.

3 3) write AAH into each byte and then read back to verify correctness.

4) write FFH into each byte and then read back to verify correctness.

I The random test purpose is to detcrminc whether each memory location can correctly be
addressed. This test uses two passes:

1 1) generate a random number for each byte of memory and then write it to memory.

2) regenerate the random number for each byte of memory and then read the memory to
verify correctness.

Even though the random test may seem simpler than the pattern test, the time required to
generate the random numbers causes the random test to take 4 times longer than the pattern test
on the iRMX II system.I

i

I
3 12

3.3. Ntest

3 The ntest program is used to test processor, crossbar and sequencer communication to determine
whether its working correctly. This test is uses a special program for each processor and a
network program automatically generated from the user supplied process.txt file. A makefile is
included to automate the command sequence.

a 3.4. Display

The display program is used to display processor, crossbar or sequencer memory in a
hexadecimal and ascii formatted dump. The command line syntax is:

display <name> <offset> <length>3 where:
w e <name> = processor, crossbar or sequencer name.

3 <offset> - hexadecimal memory offset.

<length> - hexadecimal memory length.

1 3.5. Fill
I The fill program is used to fill processor, crossbar or sequencer memory with the specified byte.

The command line syntax is:

5fiU <name> <offset> <length> <byte>

where:
wr:<name> = processor, crossbar or sequencer name.

<offset> = hexadecimal memory offset.

<length> = hexadecimal memory length.

3 <byte> = hexadecimal byte.

3.6. Replace

The replace program is used to replace processor, crossbar or sequencer memory with the
specified word(s). The command line syntax is:

replace <name> <offset> <length> <word> ... <word>

I where:
w e <name> = processor, crossbar or sequencer name.

5<offset> = hexadecimal memory offset,

U

I
3 13

<length> = hexadecimal memory length.

5 <word> = hexadecimal word.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
£
U

3 14

4. Crossbar/Sequencer Code Generation Tools

4.1. lntWoducton

3 The crossbar/sequencer code generation tools consist of a collection of programs developed at the
Georgia Institute of Technology. These tools, which execute on a DEC MVAX II running Ultrix
1, assist the user in constructing correct crossbar/sequencer code. Figure ? shows the relatonship£ between each program and how they interact.

4.2. Type

The type program parses a complete FORTRAN main program, which includes both declarative
and executable statements, and extracts data variable explicit and implicit type information. The3 command line syntax is:

where:
type <input

>output

3 input = input file name.

output = output file name.

4.3. Usage

The usage program parses a partitioned block of executable statements from the FORTRAN main
program and extracts data variable usage information. In addition, FORTRAN source for each
subroutine called must be includcd in the input so that usage may determine how each subroutine

Sparameter is used. The command line syntax is:

where: usage <input >output

5 input = input file name.

output = output file name.

Usage parses the entire input file first and builds data structures which represent subprogram
blocks and the variable usage within them. Then usage propagates subroutine formal argument3 variable usage to the actual argument variable usage through calls. This process continues
recursively until no more variable usage propagation is required.

I

I
I

I

1 4.4. Combine
15

3 The combine program combines the type program output with up to 32 usage program outputs to
form a output file which contains only the typed data variables which are used on more than one
processor partition. The command line syntax is:

combine <input '<nameO>=<blockO>' ... '<name3l >=<block3I>' >output

3 where:

input = input file name.

'<namei>=<blocki>' = processor name & partition name

3 output = output file name.

The combine program first builds a symbol table containing variable name, data type and array
dimensions. Then combine reads each usage program output file and builds a data structure
which represents the variables usage for each processor. Finally, combine outputs only those
variables, with the associated data type and dimensions, which are used on more than one5 processor partition.

4.5. Sequence

The sequence program converts the output of the combine program output into
crossbar/sequencer code and generates include files for each processor partition that contain5 corresponding send and receives in FORTRAN. The command line syntax is:

where: sequence <input '<name0>=<block0>' ... '<name3 I >=<block3 I>' >output

3 input = input file name.

'<namei>=<blocki>' = processor name & partition name

output = output file name.

The sequence programs reads the combine program output and builds a data structure which
represents variable usage for each processor. The data structure is then sorted so as the variables
that are used on the most processors are at the top of the list. Starting at the top of the list, the
crossbar/sequencer code is generated for a variable and output. Also, the associated include file
for each one of the processors using this variable is updated with the appropriate send or receive.
The rest of the list is then searched from top to bottom to determine whether one or more
variables may be sent during the same crossbar/sequencer cycle. If any are found then they are
output and marked as output. Then the whole process repeats until all variables have been

*output.

U

I

4 .6 . S u m a r y
1 6

3 'The summary program converts the output of the combine program output into a summary table
which shows the typed data variables usage which are used on more than one processor. The
command line syntax is:

summary <input '<nameO>=<blockO>' ... '<nane3 l>=<block3 I>' >output

3 where:

input = input file name.

'<namei>=<blocki>' = processor name & partition name

ft output = output file name.

The combine programs reads the combine program output and then outputs a table in sorted order5with variables listed down the page and processors listed across the page. On the last page, the
number of input and outputs per processor is givcn. This number represents the theoretical lowerg limit on the number of crossbar/sequcncer cycles required to implement these communications.

I
I
I
I
I
I
I
I
U
U

U
1 17

5. PFP Programming Library

I In order to isolate the PFP programmer from the intracacies of interacting directly with the
hardware, several libraries of routines have been developed. The most extensive of these3 libraries deal with target-target communication and with target-host communication, but there are
also libraries that support high-accuracy timing and the control of LED indicators on each target
board. In each case, separate interfaces have been developed for each of four languages: C,
FORTRAN, Pascal, and PL/M. The first three languages are considered essential because of
their wide usage, and PL/M is included because of its availability and efficient implementation
on the Intel host system. Much effort has been made to make each language interface similar,
but the detailed syntax of each language is necessarily different because of the languages

themselves.

3 The two main types of communication (target-target and target-host) both allow for a wide range
of message types (integers, strings, real numbers, arrays, etc.). The first section that follows will
describe these message types in detail, as they relate to each of the four languages. This
information thus applies to two later sections, one on target-target communication and one on
target-host communication. These two sections describe the actual communication routine
interfaces for each of the four languages in turn. Finally, this material concludes with

information on the LED and timer libraries.

1 5.1. Message Types

The next four subsections describe the message types for C, FORTRAN, Pascal, and PL/M. The
main content for each subsection is a table that lists the supported message types (in the third
column of the table) along with the corresponding "native" standard data type for that particular
language (in the first column). For example, the message type "LOGICAL_08BIT" (an eight-bit
logical variable) corresponds to a "char" in C, a "logical* 1" in FORTRAN, a "boolean" in Pascal,

and a "byte" in PL/M. These are the most reasonable mappings that are possible between the
various languages. For most of the languages, it is possible (and perhaps more convenient) to
use an alternate data type in preference to the standard data type. For example, a communication
routine in a C program that is designed to send CHARACTER_08BIT messages will function
equally well with a variable of the standard C data type "char" or the alternate
"CHARACTER_08BIT._type." This is strictly a matter of user preference. FORTRAN does not
support the declaration of user-defined data types, so only the standard data types are available in

* FORTRAN programs.

Complex numbers are defined as structures (or records) in all languages but FORTRAN, which
supports complex variables directly. All other types are simple data types, not structures. In all
cases, arrays are handled as repetitions of the given data types. This will be made clearer in the
examples that follow later.

I The "network" column in each table gives an example of the crossbar code corresponding to a
target-target communication of the given data type, assuming that a single variable of that type is
sent from processor p00 to p01. The only difference in these lines of crossbar code is the

U

U
* 18

replication factor which appears after the decimal point. Since the crossbar allows for a
maximum of 16-bit wide transfers during each cycle, it is necessary to use two cycles to send a
32-bit variable such as a single-precision real number. For this reason, each "network" entry for
a single-precision real transfer will show "p01 := p00.2" to indicate that two cycles are required
to send such a variable from p00 to p01. Similarly, some variables will require four cycles.

The application of each of these message types will be illustrated by examples in later sections.

3 5.1.1. C

The C message types are given in Table 1. Note that the type "char" can correspond to either the
CHARACTER_08BIT message type or the LOGICAL_08BIT message, since C does not
implement logical types directly. The standard data type "int" is avoided in preference to "short"
and "long," which are of known length on any present or future host or target processor system.

Table 1: C message types

datajtype alternate data type message type network
char CHARACTER 08BIT-type CHARACTER 08BIT p :=POO.1
struct COMPLEX_32BIT_type COMPLEX_32BIT p01 p00.4
(
float r,
float i;

struct COMPLEX_64BITtype COMPLEX_64BIT p01 p00.8
double r,
double i;I

char LOGICAL 08BIT type LOGICAL 08BIT p01 POO.1
short LOGICAL 16BIT type LOGICAL 16BIT p01 :-- I
long LOGICAL 32BIT type LOGICAL-32BIT p0: p00.23 float RE ,L 32BIT type REAL 32BIT pOI :p.2
double REAL 64BIT type REAL-64BIT 1O1 p00.4
signed char SIGNED_08BIT type SIGNED 08BIT p01 :=POO.1I
signed short SIGNED 6PIT_type SIGNED 6BIT PO .
signed long SIGNED_32BIT type SIGNED-32BIT p01 pOO.2
unsigned char UNSIGNED 08BIT type UNSIGNED 08BIT p1 p00.1
unsigned short UNSIGNED 16BIT typc UNSIGNED 16BIT p0 I POO.1
unsigned long UNSIGNED 32BIT type UNSIGNED 32BIT p l p00.2

3 5.1.2. FORTRAN

The FORTRAN message types are given in Table 2. As mentioned earlier, note that no alternate3 data types are available because of limitations within FORTRAN.

I
U

Table 2: FORTRAN message types.
19

3 data-type alternate data-type message type network
character CHARACTER 08BIT l P1
complex*8 COMPLEX-32BIT p0: p00.4
complex* 16 COMPLEX 64BIT DOI :0.8
logica*1 LOGICAL_08BIT p1 :_ p I.1
logical*2 LOGICAL 16BIT p0 I POO.I
logical*4 LOGICAL 32BIT p01 vp.2
real*4 REAL 32BIT p0 =p00.2
rea*8 REAL 64BIT v01 pM.4Sinteger*l SIGNED 08BIT p01 :-- POO. I

integer*2 SIGNED 16BIT p01 := POO. I
integer*4 SIGNED 32BIT p01 : p00.2

integer*l UNSIGNED 08BIT DU1 := I
integer*2 UNSIGNED 16BIT pI0 :=POO.1I
hlteger*4 UNSIGNED 32BIT p01 := p0.2

5.1.3. Pascal

5 The Pascal message types are given in Table 3. Both signed and unsigned 8-bit variables map
into the standard enumerated type [0..2551, which is essentially a "byte" type. TheU communication routines will correctly interpret the byte variable for the user.

Table 3: Pascal message types

I
I
I
3.
U
I
U
U
U

I

I datatype alternate datatype message type network 20

char CHARACTER 08BIT type CHARACTER 08BIT p01 p00.13 record COMPLEX_32BITtypc COMPLEX_32BIT p01 p00.4
r: real;
i: real;
end
record COMPLEX_64BIT_type COMPLEX_64BIT p01 p00.8
r. longreal;
i: longreal;
end
boolean LOGICAL 08BIT type LOGICAL 08BIT p01 :=p00.1
integer LOGICAL-I6BIT type LOGICAL 16BIT p01 := p00.1
Iongint LOGICAL 32BIT type LOGICAL 32BIT p01 p00.2
real REAL 32BIT type REAL 32BIT p01 := P00.2
longreal REAL 64BIT type REAL 64BIT p01 := p00.4
0..255 SIGNED.08BITtypc SIGNED 08BIT p01 p00.1
integer SIGNED 16BIT type SIGNED 16BIT p01 p00.1
longint SIGNED-32BIT type SIGNED 32BIT 101 := p00.2
0..255 UNSIGNED 08BIT type UNSIGNED 08BIT p01 p00.1
word UNSIGNED 16BIT type UNSIGNED 16BIT p01 p00.13 L longint UNSIGNED 32BIT type UNSIGNED 32BIT p01 := p00.2

5.1.4. PL/M

I The PL/M message types are given in Table 4. Both signed and unsigned 8-bit variables map
into the standard "byte" type, as do 8-bit logical variables. Similarly, the standard "dword" type
is used for 32-bit signed, unsigned, and logical variables, and the standard "word" type is used

for 16-bit unsigned and logical variables. The communication routines will correctly interpret
these variables for the user. PL/M does not support double-precision (64-bit) real variables.

S Table 4: PL/M message types.

I
U

I

I

I

I
* _ _ _ _ _ _ _ _ _ _ 21

data_type alternate datatype messagetype network2

byte CHARACTER 08BIT_type CHARACTER_08BIT p0: p00.1
structure COMPLEX_32BIT-type COMPLEX_32BIT p01 p00.4(
r real,

COMPLEX-64BIT
byte LOGICAL 08BIT type LOGICAL 08BIT
word LOGICAL I6BIT type LOGICAL_16BIT 1O0 :=POO..1
dword LOGICAL_32B1T type LOGICAL_32BIT v01 :1.2
real REAL32BITtyp REAL 32BIT p0 p.2

REAL 64BIT
byte SIGNED 08BIT type SIGNED_08BIT DOI := I0.
integer SIGNEDI6BIT type SIGNED 16BIT 101 := I
dword SIGNED 32BIT type SIGNED_32BIT p01 :=POO.2
byte UNSIGNED 08BIT type UNSIGNED 08BIT 1OI :=Poo.1
word UNSIGNED 16BIT type UNSIGNED-16BIT
dword UNSIGNED 32BIT type UNSIGNED 32BIT pOI :p0.2

5.2. Target Processor to Target Processor Communication

Having a basic understanding of the variable types, we can now turn to the communication
routines, beginning with the targct-target routines. For each message type, there are
complementary send and receive routines. Any of these can be used on any target processor, as
long as the complementary routine is included at the appropriate place in the program running on
the "connected" target (as defined by the crossbar and sequencer code). These routines cannot be
used on the host processor -- they are for sending and receiving through the crossbar network
only. These routines operate only on single scalar (or structure) variables. Arrays are handled by
repeating the communication routine as many times as necessary. (This differs from the built-in
repetition capability of the host-target communication routines which will be discussed later.)I

U
U
I
U
I
U

22

3 5.2.1. Send

Each of the send routines are described by example in the four sections which follow (one section
for each language. The receive routines will be described afterwards.

3 5.2.1.1. C

Refer to Appendix ? for a complete listing of the source code for these routines. Example I
illustrates each of the send routines. Note that these routines expect a pointer to their only

parameter, accomplished in these examples by using the "&" operator.

I Example 1: C Send

COMPLEX 32BIT type c32;
COMPLEX 64BIT type c64;
LOGICAL-08BIT-type 108; /* or "char 108;" "/
LOGICAL 16BIT type 116; /* or "short 108;" */
LOGICAL_32BIT-type 132; I" or "long 108;" '1
REAL 32B1T type r32; /* or "float r32;" '/
REAL--64BIT-type r64; /* or "double r32;" "/
SIGNED 08BITtype s08; / and so on ... "/
SIGNED16BIT type s16;
SIGNED 32BITtype s32;
UNSIGNED 08BIT type u08; /* and so on ... 'I
UNSIGNED- 16BIT-type u16;
UNSIGNED-32BIT-type u32;

send COMPLEX 32BIT(&c32
send-COMPLEX-64BIT(&c64);

send LOGICAL 08BIT(£108);
send-LOGICAL-16BIT(£116);
sendLOGICAL_32BIT(&132);

send REAL 32BIT(&r32);
send-REAL-64BIT(&r64);

send SIGNED 08BIT(&s08);
send SIGNED-16BIT(&sl6);
send-SIGNED-32BIT(&s32);

send UNSIGNED 08BIT(&u08);
send-UNSIGNED-16BIT(&ul6
send-UNSIGNED-_32BIT(&u32);

5.2.1.2. FORTRAN

URefer to Appendix ? for a complete listing of the source code for these routines. Example 2
illustrates each of the send routines. Note that, like any other FORTRAN subroutines, these
routines require a "call" statement. FORTRAN defaults to passing parameters with pointers,
which is the correct mode for these subroutines.

I
I
I

I

I Example 2: FORTRAN Send.
23

COMPLEX*8 c32
COMPLEX*16 c64
LOGICAL*1 108
LOGICAL*2 116
LOGICAL*4 132
REAL*4 r32
REAL*8 r64
INTEGER*1 s08

INTEGER*2 s16
INTEGER*4 s32
INTEGER*1 U08
INTEGER2 U16
INTEGER 4 u32

call send COMPLEX 32BIT(c32

call send-COMPLEX-64BIT(c64

call send LOGICAL 08BIT(108
call send-LOGICAL-16BIT(116
call sendLOGICAL-32BIT(132

call send REAL 32BIT(r32

call send-REAL-64BIT(r64

call send SIGNED SBIT(s08

call send SIGNED16BIT(s16
call send-SIGNED-32BIT(s32

call send UNSIGNED 08BIT(u08
call send-UNSIGNED-16BIT(u165call sendUNSIGNED-32BIT(u32

5.2.1.3. Pascal

Refer to Appendix ? for a complete listing of the source code for these routines. Example 3

illustrates each of the send routines. Pascal also defaults to the correct mode of passingIparameters by location (with pointers).

I
I
U
U
U
I
I
U

U
Example 3: Pascal Send.

24

c32 COMPLEX 32BIT type;

c64 COMPLEX_64BIT type;
108 LOGICAL_08BITtype; (or "108 boolean;"
116 LOGICAL_16BIT type; (or "116 integer;"
132 LOGICAL_32BIT type; (or "132 longint;" }
r32 : REAL 32BIT_type; { and so on ...
r64 : REAL_64BITtype;
s08 : SIGNED 08BIT type;
s16 : SIGNED_16BITtype;

s32 SIGNED 32BIT_type;
u16 -:UNSIGNED -16BIT -type;u32 : UNSIGNED_32BIT_type;

send COMPLEX 32BIT(c32);

send-COMPLEX-64BIT(c64);

send LOGICAL 08BIT(108);
sendLOGICAL_16BIT(116);
sendLOGICAL_32BIT(132);

send REAL 32BIT(r32 I;
sendREAL-64BIT(r64);

send SIGNED 08BIT(s08);

send SIGNED 16BIT(s16);
sendSIGNED_32BIT(s32);

send UNSIGNED 08BIT(u08 I;
send UNSIGNED 16BIT(u16);
sendUNSIGNED_32BIT(u32);

5.2.1.4. PL/M

Refer to Appendix ? for a complete listing of the source code for these routines. Example 4
illustrates each of the send routines. Note that these routines expect a pointer to their only

parameter, which must be explicitly coded with the "@" operator.

U
I
U
U
I
I
I
U

I

Example 4: PUM Send.
25

declare c32 COMPLEX_32BIT type:
declare 108 LOGICAL 08BIT type;
declare I16 LOGICAL 08BIT type;

declare 132 LOGICAL_08BITtype;
declare r32 REAL 32BIT_type;
declare s08 SIGNED 08BIT type;
declare s16 SIGNEDI6BIT type;
declare s32 SIGNED_32BIT type;
declare u08 UNSIGNED_08BIT_type;declare u16 UNSIGNED_16BIT type;
declare u32 UNSIGNED_32BIT-type;

call sendCOMPLEX_32BIT(@c32);

call send LOGICAL 08BIT(@108);
call send LOGICAL 16BIT(@116);
call send-LOGICAL-32BIT(@132);

call sendREAL_32BIT(@r32);

call send SIGNED 08BIT(@s08);
call send SIGNED-16BIT(@s16);
call send SIGNED 32BIT(@s32);

call send UNSIGNED 08BIT(@u08);

call send UNSIGNED 16BIT(@ul6);
call sendIUNSIGNED-32BIT(@u32

I
I
I
I
I

I
I
I
I
I

* 26

U 5.2.2. Receive

5 Each of the receive routines are described by example in the four sections which follow (one
section for each language). The general form of these routines is identical to the complementary
send routines.

5.2.2. 1. C

5 Refer to Appendix ? for a complete listing of the source code for these routines. Example 5
illustrates each of the receive routines. Note that these routines use the "&" operator to pass a
pointer.

Example 5: C Receive.

COMPLEX 32BIT type c32;
COMPLEX 64BIT type c64;
LOGICAL 08BIT type 108; /* or "char 108;" /
LOGICAL-16BIT-type 116; /* or "short 108;" */
LOGICAL 32BIT type 132; /* or "long 108;" /
REAL 32B1T type r32; /* or "float r32;" */
REAL_64BIT type r64; /* or "double r32;- */
SIGNED 08BIT type s08; /* and so on ...
SIGNED 16BIT type s16;
SIGNED_32BIT type s32;UNSIGNED 08BITtype u08;

UNSIGNED_16BIT~type u16;USIGNED 32BITtype 32;

receive COMPLEX 32BIT(&c32);

receive-COMPLEX-64BIT(&c64);

receive LOGICAL 08BIT(£108);
receive-LOGICAL-16BIT(£116
receive-LOGICAL-32BIT(6132);

receive REAL 32BIT(&r32);
receive-REAL-64BIT(&r64);

receive SIGNED 08BIT(&s08);
receive-SIGNED-16BIT(&sl6);
receive-SIGNED-32BIT(&s32};

SreceiveUNSIGNED_08BIT(&u08)

receive UNSIGNED 16BIT(&ul6);
receive-UNSIGNED-32BIT(&u32);

3 5.2.2.2. FORTRAN

Refer to Appendix ? for a complete listing of the source code for these routines. Example 6
illustrates each of the receive routines. Note that, like any other FORTRAN subroutines, these
routines require a "cal" statement. Again, FORTRAN defaults to passing parameters by
location.

I
I

I

Example 6: FORTRAN Receive.
27

COMPLEX*8 c32

COMPLEX*16 c64
LOGICAL*l 108
LOGICAL*2 116
LOGICAL*4 132
REAL*4 r32
REAL*8 r64
INTEGER*1 s08
INTEGER*2 s16
INTEGER:4 s32
INTEGER 1 u08
INTEGER*2 u16
INTEGER*4 u32

call receive COMPLEX 32BIT(c32
call receiveCOMPLEX 64BIT(c64
call receive LOGICAL 08BIT(108 1
call receive-LOGICAL-16BIT(116
call receive LOGICAL 32BIT(132

call receiveREAL -32BIT(r32
call receiveREAL-64BIT(r64

call receive SIGNED 08BIT(sO8

call receiveSIGNED-16BIT(s16
call receive-SIGNED 32BIT(s32

call receive UNSIGNED 08B!T(u08
call receiveUNSIGNED-16BIT(u165call receiveUNSIGNED_32BIT(u32

15.2.2.3. Pascal

Refer to Appendix ? for a complete listing of the source code for these routines. Example 7
illustrates each of the receive routines. Again, Pascal defaults to passing parameters by location.

I
I
I
I
I
I
I
I

I
Example 7: Pascal Receive.

c32 : COMPLEX 32BITtype;

c64 : COMPLEX_64BITtype;
108 : LOGICAL_08BIT type; { or "108 : boolean;")
116 : LOGICAL 16BITtype; { or "116 : integer;")
132 :LOGICAL 32B1? type; {or "1132 :longint;")
r32 : REAL 32BITtype; { and so on ...
r64 REAL 64BIT type;
sO8 : SIGNED OSBIT type;
916 : SIGNED 16BIT type;
s32 SIGNED 32BITtype;
u08 UNSIGNED 08BTT type;
u16 : UNSIGNED 16BITtype;
u32 : UNSIGNED-32BIT_type;

receive COMPLEX 32BITI c32);

receive-COMPLEX64BIT(c64);

receive LOGICAL 08BIT(108);
receive LOGICAL-16BIT(116);
receive-LOGICAL-32BIT(132);

receive REAL 32BIT(r32);
receive-REAL-64BIT(r64);

receive SIGNED 08BIT(s08);

receive SIGNED-16BIT(s16);
receive-SIGNED-32BIT(s32);

receive UNSIGNED 08BIT(u08);
receive-UNSIGNED-16BIT(u16);5 receive-UNSIGNED-32BIT(u32);

15.2.2.4. PL/M

Refer to Appendix ? for a complete listing of the source code for these routines. Example 8
Mustrates each of the receive routines. Note that these routines use the "@" operator to pass a
pointer.

I
I
I
U
I
I
I
U

I

Example 8: PL/M Receive.

declare c32 COMPLEX 32BIT type;

declare 108 LOGICAL-08BIT-type;
declare 116 LOGICAL"08BIT-type;
declare 132 LOGICAL 08BIT type;
declare r32 REAL 329rT type;
declare s08 SIGNED 089IT type;
declare s16 SIGNED-16BIT-type;
declare s32 SIGNED 32BIT type;
declare u08 UNSIGNED 08BT type;
declare u16 UNSIGNED_16BIT type;
declare u32 UNSIGNED_32BIT_type;
call receiveCOMPLEX 32BIT(@c32);

call receive LOGICAL 08BIT(@108);
call receive-LOGICAL-16BIT(@116);
call receive-LOGICAL-32BIT(@132);

call receiveREAL_32BIT(@r32);

call receive SIGNED_08BIT(8s08
call receive SIGNED 16BIT(@s16);
call receive-SIGNED-32BIT(@s32 I;

call receive UNSIGNED 08BIT(@u08);
call receive-UNSIGNED-16BIT(@u16);
call receive_-UNSIGNED-32BIT(@u32);

5 5.3. Target Processor to Host Computer Communication

It is often necessary to provide for host interaction with the target processors. Typically, this is3to provide initial data values (from host to targets) or to output run-time values (from targets to
the host disk or to the host console). Two libraries of routines are provided for this purpose. The
"Input" routines are used for receiving messages at either a host or a target, and the "Output"
routines are used to send messages from a host or a target. We avoid the use of the terms "send"
and "receive" from now on, reserving them to describe crossbar communication (as in the
previous examples). Although the actual routines that are linked into a host program differ from
the same routines linked into a target program, the user interface is identical, presenting a simple,
uniform interface to the programmer. Although target I/O operations must match up with
complementary host I/O operations, it is possible to write programs in a way that is relatively
tolerant of sequencing variations, as opposed to the corresponding operations over the crossbar
network. One convenient way to do this is to not write a custom host program for each
application, using instead the "IOserver" program described earlier in this manual. The IOserver,
after initialization, continually polls all active targets to determine if any are attempting to send
messages to the host. These messages are passed to the console or to a disk file.

I5.3.1. Input

The input libraries are provided to transfer messages TO the calling program. As before, each of
the libraries is broken down into a subsection of examples for each language. The message-size
parameter allows the routine to repetitively input variables of the given type, which is useful for3array input (including character strings). In each of the examples below, note that all three
parameters (including messagejtype and message-size) are outputs from each routine. This
means that the message type and size are transmitted to the inputting processor along with the

I

I
I 30

message itself and allows for applications that may or may not know what type of messages are
forthcoming. If the message type is unknown, the message should be stored in a generic array of
bytes, with type conversion to be performed later. In the examples, however, we assume that a
known type of message is being input and thus assign the incoming message to a variable of the
appropriate type. We further assume, just as an example, that the message length is less than or
equal to 4, declaring the variable arrays accordingly.

I 5.3.1.1. C

Refer to Appendix ? for a complete listing of the source code for these routines. Example 9
illustrates each of the input routines. Note that these routines expect a pointer to each of the three
parameters.

3 Example 9: C Input.

SIGNED 6BIT type messagetype;
SIGNED 16BIT type message-size;
COMPLEX 32BI'F type c32(4];
COMPLEX-64BIT-type c64 (41;
LOGICALO8BIT-type 108[41;
LOGICALl16BIT type 116[41;
LOGICAL-32BIT-type 132(41;
REAL _32BIT type r32 [41;
REAL 64BIT-type r6441;
SIGNED 08BIT type s08[4];l SIGNED_ 16BI T~type s 16 [41];
SIGNED_32BIT Ttype s32[4];

UNSIGNED_08BITtype u08[41;
UNSIGNEDI6BIT~type u16[1;
UNSIGNED_32BIT_type u32 (41;

input message(&message type, &c32, &message size);
input message(imessage type, &c64, &message size);

input message(&message_type, &108, &message size);
input message(&message_type, £116, &message size);
input-message(6message_type, &132, &message size);
input message(&message type, &r32, &message size);
input message(&messagetype, &r64, &message size);

input message(&messagetype, &s08, &message size);
input message(&message_type, &s16, &messagesize);
input message(&message_type, &s32, &message size):

input message(&message_type, &u08, &message size);
input message(&messagetype, £u16, &message size 1;Iinput-messagec fimessage type, &u32, &message size C

3 5.3.1.2. FORTRAN

Refer to Appendix ? for a complete listing of the source code for these routines. Example 103 illustrates each of the input routines. All values are passed by location (with pointers).

I
I
I

UExample 10: FORTRAN Input. 3

INTEGER*2 mesage type

INTEGER*2 messaqe size
COMPLEX*S C3'2(4)
COMPLEX*16 C64(4)
LOGICAL*1 108(4)
LOGICAL*2 116(4)
LOGICAL*4 132(4)
REAL'4 r32 (4)
REAT*8 r64 (4)
INTEGER*1 308(4)
INTEGER*2 316(4)IINTEGER*4 332(4)
INTEGER'1 U08(4)
INTEGER'? ul6(4
INTEGER*4 u32(4)

call input-message(message type, c32, message size
call input-message C message type, c64, message size

call input -message(C message type, 108, message size
call input-message C message type, 116, message sizeIcall input message C message type, 132, message size

call input-message(message type, r32, message size
call input-message(message type, r64, message size

call input message(C message type, s08, message size
call input Message(message type, s16, message size
call input-message C message type, s32, message size

call input message(message type, uOB, message size
call input message(message type, u32, message size
call input message C message type, u32, message size

I 5.3.1.3. Pascal

Refer to Appendix ? for a complete listing of the source code for these routines. Example I1II illustrates each of the input routines. Again, all values are passed by location (with pointers).

I

Example 11: Pascal Input.
32

message type: SIGNED_16BITtype;
message size: SIGNED_16BIT_type;
c32 : array [l .4] of COMPLEX_32BIT_type;
c64 : array (1 .4] of COMPLEX_64BITtype;
108 : array [1 .4] of LOGICAL_08BIT type;
116 : array [1 .4] of LOGICAL_16BITtype;
132 : array [1 .4) of LOGICAL_32BITtype;
r32 : array [1 .4] of REAL_32BIT_type;

r64 : array (1. .4 of REAL 64BIT type;
s08 : array [- .4] of SIGNED_08BfT_type;
s16 : array [1- 4] of SIGNED 16BIT type;
s32 : array (1 .4] of SIGNED 32BITtype;
uO8 : array [1 .4] of UNSIGNED_08BITtype;

u16 : array (1- .4 of UNSIGNED_16BIT_type;
u32 : array [1 .4] of UNSIGNED_328IT_type;

input message(message type, c32, message_size

inputmessage(message type, c64, message_size);

input-message(message type, 108, message size);
inputImessage(message type, 116, message-size
input message(messagetype, 132, message-size);

input message(message type, r32, message size);
input message(message_type, r64, message-size);

input-message(message type, s08, messagesize);
inputmessage(messagetype, s16, messagesize 1;
input-message(messagetype, s32, messagesize);

input message(messagetype, u08, messagesize);
input message(messagetype, u16, message-size);
input message(message type, u32, messagesize);

5.3.1.4. PL/M

Refer to Appendix ? for a complete listing of the source code for these routines. Example 12
illustrates each of the input routines. The three parameters are passed as pointer through the use
of the "@" operator.I

I
I
I
I
I
I
I

I

Example 12: PL/M Input.
33

declare messagetype SIGNED_16BIT type;

declare message_size SIGNED_168ITtype;

declare c32(4) COMPLEX 32BIT_type;
declare 108(4) LOGICAL 08BIT_type;
declare 116(4) LOGICAL 08BIT type;
declare 132(4) LOGICAL_08BITtype;
declare r32(4) REAL_32BITtype;
declare sO8(4) SIGNED 08SITtype;
declare s16(4) SIGNED 16BITtype;
declare s32(4) SIGNED 32BITtype;
declare u08(4) UNSIGNED 08BIT_type;
declare u16(4) UNSIGNED 16BIT_type;

declare u32(4) UNSIGNED 32BIT_type;

call input messageC @messagetype, @c32, @message-size)

call inputmessagec @message type, @108, @message_size];
call input-message(@messagetype, @116, @message_size I;
call input emessage(@message_type, @132, @messagesize);
call inputImessage @message_type, Or32, @message-size
call inputmessagec @messagetype, @s08, @messagesize);

call input message(@message type, @sl6, @messagesize);
call input-message(@message-type, @s32, @message size);

call input message(@messagetype, @u08, @messagesize);

call input-message(@messagetype, @u16, @message_size ;
call input-message(@message type, @u32, @messagesize ;

5.3.2. Output

I The output libraries are provided to transfer messages FROM the calling program. As before,
each of the libraries is broken down into a subsection of examples for each language. The
messagesize parameter allows the routine to repetitively output variables of the given type,
which is useful for array output (including character strings). In each of the examples below,
note that all three parameters (including messagetype and message-size) are inputs to each
routine. This means that the calling program can declare the message variable arrays of the
appropriate length for the maximum-size message to be sent. We further assume, just as an
example, that the message length is equal to 4, declaring the variable arrays accordingly.

Note that these routines expect a pointer to only the variable used to store the message. The
other parameters are passed by value.

5.3.2. 1. C

Refer to Appendix ? for a complete listing of the source code for these routines. Example 13
illustrates each of the output routines.

I
I
I
I

I
Example 13: C Output.

34

COMPLEX 32BIT type c32(41;
COMPLEX_64BIT type c64 [41;
LOGICAL_08BIT type 108[4];
LOGICAL_16BIT type 116(4];
LOGICAL32BIT type 132[4];
REAL 321IT type r32f4J;

REAL-64BIT type r64[4];
SIGNED 08BIT type s08[4);
SIGNED 16BIT-type s16[4];
SIGNED 32BIT-type s32[41;
UNSIGNED 08BIT type u08[4];
UNSIGNED-16BIT-type u16[4];UNSIGNED-32BIT type u32[41;

output message(COMPLEX_32BIT, &c32, 4);

output message(COMPLEX_64BIT, &c64, 4);

output message(LOGICALOBBIT, &108, 4);
output message(LOGICAL 16BIT, &116, 4);
output message(LOGICAL 32BIT, &132, 4);

output message(REAL 32BIT, &r32, 4);
output message(REAL_64BIT, £r64, 4);
output message(SIGNED 088IT, &s08, 4);

output message(SIGNED-16BIT, &s16, 4);
output message(SIGNED_32BIT, &s32, 4);

output message(UNSIGNED_08BIT, &u08, 4);
output message(UNSIGNED_168IT, &u16, 4);
output message(UNSIGNED_32BIT, &u32, 4);

5.3.2.2. FORTRAN

Refer to Appendix ? for a complete listing of the source code for these routines. Example 14
illustrates each of the output routines. Note that it is necessary to force FORTRAN to pass
constants by value.

I
I
I
U
I
I
I
I

Example 14: FORTRAN Output.
3

INTEGER*2 message type

INTEGER*2 message size

COMPLEX*16 c64(4)

ILOGICAL*4 132(4)
REAL'4 r32 (4)
REAL 8 r64 (4)
INTEGER'l s08(4
II4TEGER*2 sl6(4)I INTEGER*4 332M4
INTEGER*1 uOS(4
INTEGER*2 u16(4
INTEGER*4 u32(4)

call output message(%VAL(COMPLEX_64B1T), c32, %VAL(4)
call output-me3sage) %VAL(COMPLEX_32BIT), c64, %VAL(4

call output-message) %VAL(LOGICALOSBIT), 108, *VAL(4)
call output-message(%VAL(LOGICAL_16BIT), 116, IVAL(4Icall output-message) %VAL(LOGICAL-32BIT), 132, PVAL(4)

call output message(%VAL(IREAL -32BIT), r32, %VAL(4
call output-message(%VAL(REALC64BIT), r64, %VAL(4)3call output-message(%VAL(SIGNEDOSBIT), sO8, %VALM4
call output message(%VAL(SIGNED_16BIT), s16, %VAL(4
call output-message) %VAL(SIGNE:D_32B1T), s32, %4VAL(4)

call output message) *-IT JSIGNEDO08BIr), u08, %VAL(4
call output message(* VLtflSIGNED-16BIT), u16, %VAL(4
call output messaae(%VAL(UNSIGNEO 32BIT), u32, %VAL(4)

5.3.2.3. Pascal

Refer to Appcndix ? for a complete listing of the source code for these routines. ExampleI illustrates each of the output routines.

UExample: Pascal Output. 3

c32 :array (1.41 of COMPLEX_32BIT type;
c64 :array (1- 4] of COMPLEX_64BIT type;
108 :array (1- 41 of LOGICAL_08BIT type;

116 :array [1.-4] of LOGICALlEBIT type;
132 :array (1. .4] of LOGICAL_32BIT type;
r32 :array (1. .4] of REAL 32B1T type;
r64 :array (1- 41 of REAL 64B1T type;
908 :array [1.-4] of SIGNED_08BIT_type;
s16 :array (1.-4] of SIGNED_16BIT type;
332 :array [1- 41 of SIGNEDh32BIT_type;
u08 :array (1..4] of UNSIGNED_08BIT_type;
u16 :array [1.-4] of UNSIGNED_16BIT type;
u32 :array [1- 41 of UNSIGNED_J2BIT type;

output rnessage(COMPLEX_32B1T, c32, 4)
output message(COMPLEX_64B1T, c64, 4)Ioutput -message(LOGICALO8BIT, 108, 4)

_uptmsae LOGICAL l6BIT, 116, 4)
_uptmsae LOGICAL_32B1T, 132, 4)

output-message(REAL 32BIT, r32, 4)

output ressage(REAL_64B1T, r64,4

output message(SIGNED D8BIT, sD8, 4)
output rnmessage(SIGNED -16BIT, s16, 4)

output-message(SIGNED_32BIT, s32, 4)

output-message(UNSIGNED_D8BIT, u08, 4)
output-message(UNSIGNED l 6BIT, u16, 4)1output-message(UNSIGNED 32BIT, u32, 4)

5.3.2.4. PLIM

I Refer to Appendix ? for a complctc listing of thc source code for these routines. Example 16
illustrates each of the output routines.

Example 16: PLIM Output.

Ideclare c32(4) COMPLEX -32B1T type;
declare 108(4) LOGICAL -0BIT_type;
declare 116(4) LOGICAL OS0BIT_type;
declare 132 (4) LOGICAL 08BIT type;,Ideclare r32(4) REAL_32§IT type;
declare sD8(4) SIGNED O 8BXT type;
declare s16(4) SIGNED 16BIT type;
declare s32(4) SIGNED 32B1T_type;
declare u08(4) UNSIGNEDD8BIT type;
declare u32(4) UNSIGNED_32811 type;
declare u32(4) UNSIGNED-iBBIT type;

call output_message(COMPLEX_32B11, @c32, 4)

call output_rnessage(LOGICAL_08811, @108, 4)
call output_messaqe(LOGICAL -1BIT, @116,4
call output message(LOGICAL_32BIT, @132, 4)

call output-message) REAL_3281T, @r32, 4);calItu~esg(SIND0BT s8
call output message) SIGNED_08811, @s16, 4)
call output_message) SIGNED 16811, @s32, 4)

call output_message) UNSIGNED 08BII, @u08, 4)Ucall output_message(UNSIGNED 16RIT, @u16, 4)

call output _message) UNSIGNED -32R1T, @u32, 4)

5.4. Target Processor Hardware

37

3 Two libraries are provided for support of onboard target-processor features. These two features
are the real-time timer and the LEDs along the edge of the board.

3 5.4.1. Real-Time Timer

The real-time timer is convenient for measuring the elapsed time required for the execution of3 various routines. It may also be used to deliberately slow down a simulation that is running
faster than real-time, providing a synchronizing mechanism with the real world. As always,
these routines are accessible from each of the four languages to be described in the following

I sections.

There are only two timer routines. One resets the timer to zero, and the other returns the timer
value (in ticks of the clock). To convert the timer value to seconds, divide the value by the timer
clock frequency, 1.229 MHz. It is necessary to reset the timer at least once, but it may then be
used for repeated timer reads (lap timing).

5.4.1.1. C

3 Refer to Appendix ? for a complete listing of the source code for these routines. Example 17
illustrates each of the real-time timer routines.

U Example 17: C real-time timer.

I UNSIGNED_32BIT_type u32;

reset timer() ;

I ~u32 - read-timer ();

5.4.1.2. FORTRAN

Refer to Appendix ? for a complete listing of the source code for these routines. Example 18
illustrates each of the real-time timer routines.

Example 18: FORTRAN real-time timer.

INTEGER*4 u32

call reset_timer(

u32 - read timer(

U
U
I

1

5.4.1.3. Pascal

38

3Refer to Appendix ? for a complete listing of the source code for these routines. Example 19
illustrates each of the real-time timer routines.

£ Example 19: Pascal real-time timer.

3 u32 : UNSIGNED_32BIT_type;

resettimer;3 u32 :- read-timer;

5.4.1.4. PL/M

IRefer to Appendix ? for a complete listing of the source code for these routines. Example 20
illustrates each of the real-time timer routines.I

Example 20: PL/M real-time timer.

~declare u32 UNSIGNED_32BIT_type;

call reset_timer;

u32 - read-timer(l

1 5.4.2. LED

Two of the LEDs on the edge of the board are accessible by user programs. Both of these LEDs
are red, and taken together they can be viewed as a binary number over the range 0-3 (ON-LED =
1, OFF-LED = 0). One LED routine is provided, and the only parameter is a value over this
range. Examples for each language follow.

1 5.4.2. 1. C

Refer to Appendix ? for a complete listing of the source code for these routines. Example 21
illustrates each of the LED routines.

I Example 21: C LED.

led(0);
led(1);
led(2);
led(3);I

I
I

!

1 5.4.2.2. FORTRAN

39

3 Refer to Appendix ? for a complete listing of the source code for these routines. Example 22
illustrates each of the LED routines.

i Example 22: FORTRAN LED.

call led(%VAL(O)
call led(%VAL(1)
call led(%VAL(2)
call led(%VAL(3)

5.4.2.3. Pascal

3 Refer to Appendix ? for a complete listing of the source code for these routines. Example 23
illustrates each of the LED routines.

I Example 23: Pascal LED.

led(0);

led(1);
led(2);1! led(3);

5.4.2.4. PL/M

It Refer to Appendix ? for a complete listing of the source code for these routines. Example 24
illustrates each of the LED routines.

Example 24: PL/M LED.

If call led(0);
call led(1);
call led(2);
call. led(3);

I
I
I
3
I

U
* 40

6. Education and Technical Support

U 'This section includes an overview of the materials provided for the PFP class which was held in
December 1989 for potential PFP users at other sites, as well as a technical report on the use of3 ACSL as a parallel programming language. For other related technical support information, see
the "PFP Technical Data Package" and the "PFP Programmer's Reference Manual," both ofg which were issued during the past year for this contract.

6.1. PFP Class Materials

f The following section has been condensed from the presentation material actually used in the
classroom sessions. It begins with some fundamentals about parallel computers, the PFP, and
the partitioning of typical problems. Not included here is the class material on diagnostics, use
of the host operating system, and laboratory exercises. Much of this omitted material is included
elsewhere, either in the "PFP Technical Data Package" or the "PFP Programmer's Reference

3Manual."

3 Types of Parallel
Computers

I SISD/SIMD/MIMD designations

Programming models:

Control-driven (imperative)

I Demand-driven (applicative, or functional)

if Dataflow

Pattern-DrivenI
1
I
I
|
I

I Types of Interprocessor
41

Communication

Fixed network/Switchable network

3 {Shared memory/Private Memory

i[Synchronous/Asynchronous

Characteristics of the
Parallel Function Processor

(PFP)

V Control-driven

3 Switchable network

Private memory

Synchronous communication

I
IControl-driven paralleli5 I machines

Most "natural" parallelization of serial uniprocessor architectures

Requires explicit processes for sending and receiving

3 All processes (functions, subroutines, assignments) ordered on all processors

Incorrect ordering of communication results in deadlock

I
I
I
t

I Simple Example
42

a=-(b+c)/(d+e)

Processor 1:3 previous instructions
temp :- b+c

send (temp, processor3)

more instructionsaI
Processor 2:I(previous instructions

temp :- d+e

send (temp, processor3)
{ more instructions }

Processor 3:
(previous instructions
receive(suml, processorl)
receive(sum2, processor2)

a :- suml/sum2

more instructions

Important aspects of
Simple Example

Variable names on different processors have no correlation (private memory)

£ Each processor's code looks like a typical imperative language, except for a few sends and
receives

I Communication processes include a source or destination in this basic model -- but not in the
PFP

I In some parallel control-driven machines, the ordering of the receives on Processor 3 would
make no difference -- but it does in the PFP

I
I
I
I
I

I
43

I Effect of the
Crossbar/Sequencer

The switching network provides the correct connections in a specific ordering (when properly3 programmed)

Each processor "sees" only one input/output port, which is connected to the right processor at thea right time

There is no need to specify source or destination in sends and receives

The orderings of all communications on all processors must be compatible with the "master"
ordering of the crossbar/sequencer

5 Typically, multiple "conversations" will take place during a single crossbar/sequencer cycle

Whenever a processor encounters a receive instruction, it must wait until the particular
communication takes place (synchronous architecture), and the communication will not take
place until all conversations are ready to proceed

3 Local buffering smooths out some of this effect

I

I
i
I
I
I
!
I

I
I

U

I Deterministic physical
44

systems

No effect occurs without cause

3 It is possible to identify subsystems with limited interactions (causes and effects)

3Subsystems generally have some concept of memory (state)

For dynamic mechanical systems, the relevant states are positions, velocities, and forces3 (Newton)

3 We cannot overemphasize the concept of state. Assigning a "small" finite number of state
variables in a system model is an approximation (there are a myriad of subatomic particles
ultimately responsible for the "true" behavior), but it is generally possible to make reasonable
models (relatively few states) based on physical principles.

Sometimes the states are easier to think of as continuous, other times discrete. External
interactions are usually approximated, the result being state variables that aren't technically state
variables (they have new values available at each time interval, but not as the result of integrating
anything). Often it is possible to choose either a "pseudo-state" model or a true state model for
an external input, such as a sine-wave generator. In this particular case we could just produce the
psuedo-state x=A*sin(omega*t)+phi OR we could implement a second-order differential
equation (with no external inputs, just two initial conditions to make the phase and amplitude3 right).

£

I
3
I
I
3

I
1 45

State Variables _

All memory of the system is contained in some set of state variables

3 For a given system, there is no unique assignment of state variables, but there is a fixed number
of state variables

1 State variables (and only state variables) are initializcd

Continuous (analog) state variables (and only such state variables) are integrated eachB integration timestep

Discrete (sampled) state variables (and only such state vanables) are updated each corresponding

5 sample time

Input functions (u=f(t)) can sometimes be treated much like state variables, but without
initialization or integration (i.e., we tend to describe "external" subsystems as functions of time,
rather than explicitly modelling them)3

iI
I
I
I
I
I
I
I

U
£ 46

Example: A Digital Logic
Simulations

An arbitrary example (a counter) which fits the classic model, with well-defined discrete state
variables

I A discrete model -- does not require numerical integration

All "next states" are explicit functions of present states

3 Concept can be extended to simulations of systems of high complexity

I
I
3Example Digital State Machine:

Two-bit counterI
U

D I

I
icount output

I
.. I =U Q I(D 0IO/Q

I

The Two-bit Counter
47

3 Two state variables: QI and QO

3 When viewed as a single two-bit number QIQO, counter will count 0, 1, 2, 3 (00, 01, 10, 11)

'Next-state" variables for Q1 and QO are called D1 and DO, respectively

Next-state equations are easily determined to be

DI = Q1 exor QO

DO = not QO

Pseudo-code for Two-bit3counter
Processor 0:

QO :- 0 /* initialize '/

while true do begin /* main loop 'I

send (QO)

DO not QO

00 DO /* state assignment separated for clarity */

end

Processor 1:
01 :- 0 /* initialize '/

while true do begin /* main loop '/

receive (QO)

Dl :- QO exor Q1

Ql D1 /* state assignment separated for clarity */

end

I
I
I
I
I
i

I
48

ii A More General Discrete
System

Another arbitrary example -- a second-order digital filter

3 Basically the same as digital logic example, except that variables and functions are not Boolean

5 Still a discrete model -- does not require numerical integration

All "next states" are still explicit functions of present states

5 Concept can be extended to simulations of digital control, digital signal processing, any discrete-
time system (including nonlinear ones)I

g Digital Filter Example

u(n) is input sequence, y(n) is output sequence

I Y(z) z - 0.5
---- = E(z)= ---------------

U(z) z2 - z + 0.5

OR

y(n) = u(n-1) - 0.5 u(n-2) + y(n-l) - 0.5 y(n-2)

5 OR
y(n) = y(n-1) -0.5 x(n-1) + u(n-I)3where x(n) = y(n-1) + u(n-1)

This final form gives the second-order system as two coupled first-order systems and is more
useful for parallel execution

I
U
I
I
I

I

I Pseudo-code for Digital
49

filter example

Promssor 0: input function)

u :- 1 /* initialize /

while true do begin /* main loop "/
send (u)Uu ;:-* just make the input an impulse function for now "1

lend

Processor 1: (calculates x)
x :- 0 /* initialize "/

while true do begin /* main loop /

receive (u)
receive (y)
send (x)

fnextx :- y + u
X :- nextx /* state assignment separated for clarity */

end

Processor 2: (calculates y)
y :- 0 /* initialize */

while true do begin /* main loop *

receive (u)

send (y)

receive (x)

nexty := y - 0.5 * x + u

y nexty /* state assignment separated for clarity */

endI
I
I

I
I
I
I
I

3 50

General Digital State Machine

DQ,

next-state variables Cokstate variables

In n

5 ~aexternaI inputs

51

I IPseudo-code for Simple
Harmonic Oscillator

I example

Processor 0: (input function -- a step)
U 1 /* initialize */

t 0

dt 0.005

u step(t)

while (t C tfinal) do begin /* main loop */

send (u)

U step(t)
t :- t + dt

end

3 Processor 1: (calculates xd)
xd 0 /* initialize */

t 0

dti 0.003

while (t < tfinal) do begin /* main loop /

send (xd)

receive (u)

receive (x)

xdd u - (b*xd + k'x)

xd :- integrate (xd, xdd, dt) /* use integration routine from library */

t :-t + dt

end

5 Processor 2: (calculates x)
x 0 /* initialize "/

t 0
I dt 0.005

while (t < tfinal) do begin /* main loop */

receive (xd)

send x)

x : integrate (x, xd, dr)

t t + dt

3 end

I
I
I
I

UModified Satellite Attitud(52

ImT

IIT
---------~

kz

7Iaw<u
I

..

------------------U
U sI/
I<
I.

IC

I
| 53

program on their own workstation, then partition the Fortran code generated by the ACSL

translator. This partitioning is semi-automated at present and can probably be made fully-
3 automated.

The focus of the parallel programming process is the DERIVATIVE subsection of the
DYNAMIC section in the ACSL program. The ACSL programmer begins by identifying
sections of code which may be performed in parallel in the ACSL code by surrounding them with
a PROCEDURAL statement and a matching END statement, even if some of these sections only
include one line. Normally, these sections correspond to a functional unit, such as the IMU or a
propulsion system. In the PROCEDURAL statement, all inputs and outputs must be listed. The
ACSL compiler does not check these inputs and outputs for correctness in terms of the actual
statements within the block. Sometimes ACSL programmers use this to their advantage to force
the compiler to sort statements in a certain order, but this cannot be done if the program is
eventually to be run in parallel. This is because we cannot allow the sort order to matter (outside
of PROCEDURAL blocks, which remain unsorted internally).

Any statements which perform integration should not be placed inside PROCEDURAL blocks.
These include the INTEG, INTVC, and LIMINT statements. The integration statements may be
grouped together at the end of the program or each may be placed immediately after the3 PROCEDURAL block which calculates the derivative of the variable being integrated.

The result of this process should be a program in which all statements (except integrations) in the
DERIVATIVE section belong Lo a PROCEDURAL block. One and only one PROCEDURAL
block will have any given variable as an output -- the translator will enforce this. This allows the
translator to sort the PROCEDURAL blocks in absolutely any order, while retaining the exact3ordering of statements within each block. Since the simulation will run correctly with any
ordering, it will also run correctly in parallel. The inputs and outputs given in the
PROCEDURAL statements correspond to variables which are received or sent by that process
over the crossbar interconnection network, so once again the importance of accuracy in these
input/output lists becomes clear: a process will not have access to the required variables if they

* are not listed.

Each PROCEDURAL block is equivalent to an ADA task, and the input/output list specifies the
required communications between tasks. Consequently, the PROCEDURAL ACSL
implementation can be viewed as a step in the migration to ADA.

A more subtle aspect of the PROCEDURAL definitions is that, preferably, each PROCEDURAL
block should output only derivative variables (i.e., variables which occur as the derivative in
some integration statement). This allows each block to run in parallel during the two primary
phases of each timestcp: 1) derivative evaluation, and 2) integration. This is not a rigid
requirement, and it can be worked around during the porting process.

1 6.2.2. Converting FORTRAN programs

Some programs, like EXOSIM, have already been written in FORTRAN, and some effort will beg required to convert them to ACSL. This is not too difficult for several reasons. First, all

3

I
54

I FORTRAN subroutines are usable in an ACSL model, orobably with no changes. Second, it is
actually possible to eliminate some FORTRAN code, since integration is built into ACSL (and3 corresponding routines exist for the PFP). Finally, if the FORTRAN program is inherently
modular, it should translate directly into the PROCEDURAL sections described above.

I 6.2.3. An Example Program

The example program to be presented here is modified in several stages to illustrate the major1 points. The result of each step is given as a listing of the ACSL model and is included in the
Appendices. The ACSL program "missil.csl" is taken directly from the examples given in the
ACSL manual. It implements a simple 6-DOF missile with only the basic functional elements.
It has no target model, seeker, guidance law, or autopilot, but it is sufficient to illustrate the
method.

A block diagram of the model is given as Figure 1. The dotted lines indicate the four partitions
which are identified in the following section.I q, cd. c

I
II

I
Figure 1: Block diagram of simple missile model

(relfence: ACSL. feference Monual. Mitchell and GoutNer Asaociates)S6.2.3..Defining the main blocks

3 The statements of misscsl were rearranged, and PROCEDURAL statements were added to

form four main blocks:3 Block 0: motor, acrodynamics, and rotational velocity dynamics

Block 1: rotational position dynamics

I

frmUyaisdnais poete

I
Block 3: translational voit dynamics55

3 Block 3: translational position dynamics

This particular partitioning is often effective for 6-DOF models. While the individual degrees of
freedom may be further split out into smaller parallel blocks, it is often not advantageous, since
there is much dependency on certain intermediate variables such as coordinate transformation
matrices and aerodynamic coefficients.

The result of this partitioning is missil2.csl, also in the appendix. See the comments in the
header and note that all changes to the original program are made in lower case. It is clear that

Svery few changes were made, just sonic minor rearrangements (and deletions of the original
PROCEDURALs, whose orderings were retained within the new PROCEDURALs).

There was no expectation that missil2.csl would run, however, since a circular definition exists.
Specifically, by looking just at the PROCEDURAL statements (which is all that ACSL does to
determine sort order for this model), it is obvious that NM depends on C, and C in turn dependsIon NM. This can be easily rectified by taking the statements which define NM(l), NM(2), and
NM(3) out of block 0 and putting them in block 2, where they more logically belong. This is
shown in the next stage, missil3.csl. This was not done earlier simply because it involved
separating statements that were together in one of the example's original PROCEDURAL blocks.
A quick inspection of the original program shows that there is no reason why these statements3 need to precede the statements which define WMD(l), WMD(2), and WMD(3).

Unlike the intermediate step (missil2.csl), missil3.csl will translate, compile, and run, giving the
same results as the original model and taking the same time to execute. The difference is that the
FORTRAN code generated by ACSL can be ported to four processors on the PFP.

3 6.2.3.2.Emphasizing state variables

While this four-processor implementation is usable, it would involve some additional
manipulation, probably manually, in order to set up the appropriate communication channels.

The problem is that missil3.csl does not adhere to the model of generating only derivative
variables as outputs of each PROCEDURAL block. (A corollary to this is that all such blocks3 must depend only on state variables, or perhaps on other derivative variables).

The next stage, shown in missil4.csl, shows that it is possible to make this missile model adhere
to the desired form. This usually involves replicating some code sections that generate
convenient intermediate non-state variables that are used in more than one block (in this case, C,
CD, and Q). This probably adds little or nothing to the execution time of the parallel3 implementation on the PFP in this case, since the replicated lines are added to block 0, which
was relatively simple (block 2 determined the execution time). After the replication, blocks 0
and 2 are roughly equal in complexity and one or the other will determine the execution time.
This model will also compile and give the same results, the only difference being that it ports
seamlessly to the PFP.I

I

I
56

I As noted in the comments of missil4.csl, there is a simple way to make a slight improvement in
execution time, left as an exercise for the reader.

I 6.2.3.3.Cheating time

One may think that the parallel implementation is not "correct" in the same sense that the serial
implementation is correct, since it relies on "old" data that can be made available to all
processors at the start of each integration step. This is simply not the case! The parallel5 implementation is a perfect implementation of proper numerical integration techniques applied to
continuous systems for the purpose of digital simulation. As such, it is correct in the same sense
as any corresponding serial implementation and will yield exactly the same results, assuming that3 computational precision is held constant.

The reason for this is that the parallel model relies only upon knowledge of the state variables at
the beginning of each timestep. State variables are those variables which are integrated and thus
contain the entire "memory" of the system. Intermediate algebraic variables are calculated on
each processor as needed, and sometimes these calculations are replicated, as noted above, to
eliminate the need for complex staging of communications.

It is possible, however, to force a little more parallelism into a model by allowing the use of
"old" data. This will almost invariably affect the simulation results, so it must be done with
discretion. The best candidates for this trick are sections of code which are fairly complex,
generating intermediate variables which change relatively slowly over time. As an example, we
will choose the sections of our missile model which calculate atmospheric damping and
aerodynamic coefficients.

I These sections are pulled out of the same lines of code which were replicated earlier on both
block 0 and block 2. Since they contribute to the heavy processing on these blocks, they are
reasonable candidates for pulling into separate blocks. It also seems reasonable that these

coefficients would not change too much from one time step to the next.

The trick is shown in missil5.csl, in which two new blocks (4 and 5) are created. Each generates
some new "derivative" variables, which arc always set to zero. Then, when the "integration" is
performed on the false state variables (C, CD, and Q), their values do not change from what they
were set to inside the block. The result of this is that any block which needs C, CD, or Q gets

their values one step late, but the calculation of these variables takes place in parallel.

This model also compiles and runs, but the results are different, as expected. If one plots the
missile positions and velocities, there are no obvious differences, but listings of actual values for
some variables show that the new model is not identical. When there is any doubt as to the3acceptability of these deviations, this "trick" should not be implemented, and model state

variables should correspond to true state variables in a physical sense.I
I
I

I

6.2.3.4.Reaping the benefits
57

3 It is possible, though, to keep the original model and still reap many more benefits from parallel
processing. This is accomplished by taking this simple model and gradually adding more
components. Most such components include their own state variables and depend only on other
state variables. A seeker model, for example, would generate some representation of what the
seeker is seeing (the seeker state) based upon the relative positions of the target and the
interceptor, which are also states. Since there is invariably some delay between the actual
imaging process and the output of seeker data, there is no problem associated with having to use
the current position states to determine the "next" seeker state. In fact, the delay is normally
much longer than the integration step, so the programmer would most likely deliberately insert
more delay in order to make a good seeker model.

Another example of a component which can be easily added is an IMU, which generates
estimated missile states, generally based on current accelerometer states (which are not the actual
accelerations).

I Reasonable seeker and IMU models can be added to the example with absolutely no increase in
execution time, since they can be performed in parallel on two or more additional processors.

I A more difficult subsystem to add would be the accelerometers themselves, which must generate
the required acceleration estimates for the IMU. The reason for this is that they are most easily
modeled as a procedure which generates acceleration estimates based on actual accelerations, but

actual accelerations are not states. (In this discussion, we are referring only to rotational
accelerations and velocities, of course.) If we arbitrarily declare the actual accelerations to be
states and then use them as inputs to an accelerometer block, then we are introducing a delay of
one integration time step, which does not accurately model the real system. While this may be
tolerable, it is more reasonable to simply add the accelerometer model to the same block (or

blocks) which calculate the true accel-rations. This block would then output estimated
accelerations as new states, in addition vhatever states it already generated. (Previously, this
block probably just integrated the actual accelerations to generate the actual velocities, which it

outputted as states. Now it would output both velocities and estimated accelerations.)

In a complex missile model, there will be many other systems which can be added as new
parallel blocks, like the seeker and IMU above. There will also be a few like the accelerometers,
which must be incorporated into existing blocks in order to maintain an accurate model. If

certain blocks grow to the point where they force execution time to grow to an unacceptable
level, it may be possible to partition them by other techniques. The emphasis here is on a basic
way of partitioning the major elements in such a way that a serial implementation can be
transferred almost effortlessly to a parallel implementation which can be fine-tuned later, if
necessary.

3
I
I

I
6.2.4. Summary 58

A proposal has been made that all simulations intended to be run on the PFP in the near future be
written in ACSL, with some specific guidelines for structure. This has several advantages,

including:

1. Specific identification of parallelism

3 2. Automatic translation to the PFP

3. Migration path to ADA

4. Built-in integration methods (in ACSL and on the PFP)

3 5. Support for specialized simulation functions (also in ACSL and on the PFP).

I
I
I
I
I
I
I
I
I
U
I
I

1 59

7. PFP File Formats

I This section discusses the special file formats required by the PFP development tools. These
include the "ENVIRONMENT" file, which specifies the system hardware configuration, the5~ "PROCESS.TXT' file, which describes the processor configuration for a specific application,
and the "NETWORK.TXT' file, which describes the network configuration for a specific
application. All applications must have a "PROCESS.TXT" file, but only multiprocessor
applications that communicate over the crossbar network (as is generally the case) require a
"NETWORK.TXT" file.

3 7.1. Environment

The "ENVIRONMENT" file contains information necessary for mapping symbolic names used
by the PIP development tools to actual hardware. It is a text file, and each line contains either
information about a hardware element (crossbar, sequencer, or target processor) or a comment
(always with a "#" as the first character on the line). Example 25shows a full 32-processor
configuration. Normally, the ENVIRONMENT file does not need to be altered by the
programmer. It may be necessary to do so, however, if some processors are removed for service

* or if memory settings are changed.

The form of a non-comment line in the ENVIRONMENT file is:

3 <element name> = <base address>;<limit address>;<element type>;

where <element name> is the label used by other applications to refer to that element, <base

address> is the starting memory address of the element in the host address space, <limit address>
is the number of valid memory locations (in bytes), and <element type> is one of several valid
element types. Currently the only element types supported are 28612, 38612, 0001, 0002, effe,

and fffe. Two of these are processor types (28612 and 38612), two are for the "first" crossbar
and sequencer (0001 and effe, respectively), and two are for the "second" crossbar and sequencer3 in a 64-processor system (0002 and fffe, repectively). All numeric field are hexadecimal.

The <element name> field can be any 16-character string, as long as there are no repetitions.
These names are used in the PROCESS.TXT and NETWORK.TXT files for each application, so
they should usually not be changed from their default values (or else some applications will cease
to run correctly).

I The <base address> field is not actually a true physical address. Only the last six hex digits
represent the memory address of each clement. The first two hex digits are used to "turn on" the3 appropriate card cage, since there are at least four active card cages in a PFP, all mapped to the
same address space but with no more than one enabled at any given time. This is done by
issuing a particular I/O command to the address 8XX, where the X's are the first two digits. All
of this is transparent to the programmer, so the eight-digit address can be viewed as a virtual
address.I

U

I
I Note that the example is for the "second" half of a 64-processor system. The first half would

contain processors p00 through p31.

Example 25: ENVIRONMENT.

1 # network 2 configuration
crossbar - 00040000;010000;0002;
sequencer - 00000000;010000;fffe;
upper right bank configuration
p58 - 02100000;100000;28612;
p33 - 02200000;100000;28612;
p37 - 02300000;100000;28612;
p48 - 02400000;100000;28612;
p52 - 02500000;100000;28612;
p47 - 02600000;100000;28612;
p43 - 02700000;100000;28612;
p63 - 02800000:100000;28612;
p59 - 02900000;100000;28612;
p32 - 02aO00000;100000;28612;
p36 - 02b00000;1000l;28612;
middle right bank configuration
p45 - 04100000;100000;28612;
p41 - 04200000;100000;28612;
p61 - 04300000;100000;28612;
p57 - 04400000;100000;28612;
p34 - 04500000;100000;28612;
p38 - 04600000;100000;28612;
p49 - 04700000;100000;28612;
p53 - 04800000,100000;28612;
p46 - 04900000;100000;28612;
p42 - 04a00000;100000;28612;
p62 - 04b00000;100000;28612;
lower right bank configuration
p51 - 06100000;100000;28612;
p55 - 06200000;100000;28612;
p44 - 06300000;100000;28612;
p40 - 06400000;100000;28612;
p60 - 06500000;100000;28612;
p56 - 06600000;100000;28612;
p35 - 06700000;100000;28612;
p39 - 06800000;100000;28612;
p50 - 06900000;100000;28612;
p54 - 06a00000;100000;28612;
<element name> - <base address>;<limi: address>;<element type>;

7.2.. Process.txt

I The 'ROCESS.TXT" file contains information about which processors are being used in this
simulation, what program to load in each processor, where to get output data, and where to put3output data. Comments are again indicated by a "#" in the first character position.

The format of each line is

I<element name> <loadfile name> <inputfile name> <outputfile name>

where <element name> is a valid name from the ENVIRONMENT file, <loadfile name> is an
object file name to be loaded to the element before starting each element, <inputfle name> is
either a valid file name for input data or "<null>" and <outputfile name> is either a valid file
name for output or "<null>". If "<null>" is used in the output file position, all output data is sent

to the user terminal display. If "<null>" is used in the input file position, all input data is taken
from the user keyboard. This routing of input data and output data is performed by theI

I

161

IOSERVE program, so the final two fields may not have meaning for an application that does not
use IOSERVE. (They should be present, however, at least as <null> entries.) The
PROCESS.TXT file is also used by the RESET, DOWNLOAD, and START programs.

Example 26 shows a typical PROCESS.TXT file. In this application, the file "target/ntest.bl" is
downloaded to each target processor, and each processor pXX receives input data from a file
pXX.txL The crossbar and sequencer load files are named "crossbar.bl" and "sequencer.bl."

1 Example 26:PROCESS.TXT.

m # network 2

crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>
upper right bank
p58 target/ntest.bl p58.txt <null>
p33 target/ntest.bl p33.txt <null>
p37 target/ntest.bl p37.txt <null>
p48 target/ntest.bl p48.txt <null>
p52 target/ntest.bl p52.txt <null>
p47 target/ntest.bl p47.txt <null>
p43 target/ntest.bl p43.txt <null>
p63 target/ntest.bl p63.txt <null>
p59 target/ntest.bl p59.txt <null>
p32 target/ntestbl p32.txt <null>
p36 target/ntest.bl p36.txt <null>
middle right bank

p45 target/ntest.bl p45.txt <null>
p41 target/ntest.bl p41.txt <null>
p61 target/ntest.bl p61.txt <null>
p57 target/ntest.bl p57.txt <null>
p34 target/ntest.bl p34.txt <null>
p38 target/ntest.bl p38.txt <null>
p49 target/ntest.bl p49.txt <null>
p53 target/ntest.bl p53.txt <null>p46 target/ntest.bl p46.txt <null>

p42 target/ntest.bl p42.txt <null>
p62 target/ntest.bl p62.txt <null>
lower right bank
p51 target/ntest.bl p5l.txt <null>
p55 target/ntest.bl p55.txt <null>
p44 target/ntest.bl p44.txt <null>
p40 target/ntest.bl p40.txt <null>
p60 target/ntest.bl p60.txt <null>
p56 target/ntest.bl p56.txt <null>
p35 target/ntest.bl p35.txt <null>
p39 target/ntest.bl p39.txt <null>
p50 target/ntest.bl p50.txt <null>
p54 target/ntest.bl p54.txt <null>

37.3. Network.txt

The "NETWORK.TXT" file contains information about processor to processor communication.

The format of this file retains compatibility with earlier versions of the PFP software and consists
of a list of communication commands. Only two command types exist. The basic command is
the CYCLE statement. The form of this statement is

CYCLE[<n>]3 <processorlist> := <proccssor.repeatcount>

where <n> is a sequence number, <processorlist> is a set of processor element names separated3by commas (the receiving processors), and <processor.repeat-count> is a processor element

U

I
* 62

name (the sending processor, optionally followed by a period and a repeat count. The repeat
count simply causes multiple sixteen-bit transfers to take place. A double-precision real number,
for example, will require a repeat count of 4.

The only other valid statement is the LOOP statement:

LOOP;

3 This indicates that all remaining cycles are performed in a repetitive loop as long as the
processors continue to run. There is no means of breaking out of this loop, but any processor can
terminate the application.

Example 27 shows the NETWORK.TXT file corresponding to the previous PROCESS.TXT
example.

Example 27: NETWORK.TXT.
| iLOOP;

CYCLE [I I
p33, p37, p48, p5 2, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p3 4, p38,

p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p58;
CYCLE (2)

p58, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p33;

CYCLE (4p58, p33, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34, p38,
p4 9, p53, p46, p42, p62, p51, p55, p44 , p40, p60, p56, p35, p39, p50, p54 := p37;CYCLE [4]
P58, p33, p37, p52, p47, p43, p

63 , p59 , p32, p36, p45, p41, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :-p48;
CYCLE C 5
p58, p33, p37, p48, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57 , p3 4, p38,

p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p5 6, p35, p39, p50, p54 :- p52;CYCLE[6

p58, p33, p37, p48, p52, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34, p38,
p4 9, p53, p46, p42, p62, p5i, p55, p44, p40, p60, p56, p35, p3 9 , p50, p54 := p47;
CYCLE C 7 1
p58, p33, p37, p48, p52, p47, p63, p59, p32, p36, p45, p41, p61, p57, p34, p38,

p49, p53, p46, p42, p62, p5i, p55, p44, p40, p60, p5 6, p35, p39, p50, p54 :- p43;
CYCLE [8 1
p58, p33, p37, p48, p52, p47, p43, p59, p32, p36, p45, p41, p61, p57, p34, p38,

p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- 963;
CYCLE C 9 1

p58, p33, p37, p48, p52, p47, p43, p63, p932, p36, p45, p41, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51i p55, p44, p40, p60, p56, p35, p39, p50 , p54 :- 59;
CYCLE (10 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p36, p45, p41, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p32;

CYCLE 12p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p45, p41, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, P50 , p54 := p36;
CYCLE E 12 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56 , p3 5 , p3 9 , p50, p54 :- p45;I CYCLE [13 1

p58, p33, p37, p48, p52 , p4 7 , p43, p63, p59, p32, p36, p45, p61, p57, p34, p38,
p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 := p41;
CYCLE C 14 1
p5 8, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p4, p41, p57, p34, p38,

p49, p53, p46, p42, p62, p5I p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p61;CYCLE [is I
p58, p33, p37, 948, p52, p47, p43, p63, p59, p.32, p36, p45, 941, p61, p34, p38,

p49, p53, p46, p42, p62, 951, p55, P44, p40, 960, p56, p35, p39, p50, p54 :- p57;
CYCLE [16 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p4 5 , p41, p61, p57, p38,
p49, p53, p46, p42, p62, p5i 5, 4, p40, p60, p56, p35, p39, p50, p54 -34;

I

m
63

m CYCLE [17
p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34,

p49, p53, p4 6, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p38;
CYCLE E 18

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34,
p3 8, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p49;
CYCLE 19

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34,
p38, p49, p46, p42, p62, p51, p55, p44, p40, p60, p56 , p35, p39, p50 , p54 :- p53;
CYCLE [20 1

p58, p33, p3 7 , p48, p52, p4 7 , p43, p63, p59, p32, p36, p45, p41, p61 , p57 , p34,
p38, p49, p53, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p46;
CYCLE [21

p58, p3 3, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57 , p34,
p38, p49, p53, p46, p62, p5i, p55, p44, p40, p60, p56, p35, p39, p50, p54 :- p42;
CYCLE E 22 1

p58, p33, p37, p48 , p52, p4 7 , p4 3, p63, p59, p32, p3 6 , p45, p41, p6l, p57 , p34,
p38, p49, p53 , p46, p42, p52, p55, p44, p40, p6 0 , p56 , p35, p3 9 , p50 , p54 :- p62;
CYCLE 23 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p6l, p57 , p34,
p38, p49, p53, p46, p4 2 , p62, p55, p44, p40, p60, p56, p35, p39, p50, p54 := p55;
CYCLE [24 1
p58, p3 3, p37, p48, p52, p47, p4 3, p63, p59 , p32, p36, p45, p41, p6 1, p57 , p34,

p38, p4 9 , p53, p46, p42, p62, p51, p44, p40, p60, p56, p35, p39, p50, p54 :- p55;
CYCLE [25 1
p58, p33, p37 , p48, p52, p47, p43, p63, p59 , p32, p36, p45, p41, p61, p57 , p34,

p38, p49, p53, p46, p42, p62, p5l, p55, p40, p60, p56, p35, p39, p50, p54 :- p44;
CYCLE [26

p58, p33, p3 7 , p48, p52, p47 , p43, p63, p59, p32, p36, p45, p41, p61 , p57 , p34,
p38, p49, p5 3, p46, p42, p62, p5i, p55 , p44, p60 , p56 , p35, p39, p50, p54 :- p40;
CYCLE [27
p58, p33, p3 7 , p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34,

p38, p49, p53, p46, p42, p62, p51, p55 , p44, p40, p56, p35, p39, p50, p54 :- p60;CYCLE [28]
m p58, p33, p37, p48, p52, p47 , p4 3, p63, p59, p32, p36, p45, p41, p61, p57 , p34,

p38, p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p35, p39, p50, p54 := p56;
CYCLE (29 1

p58, p33, p37, p48, p52, p47, p4 3, p63, p59, p32, p36, p45, p41, p61, p57, p34,
p38, p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p39, p50, p54 :- p35;m CYCLE [30 1

p5 8 , p33, p37 , p 4 8 , p52 , p47 , p43, p63, p59, p32, p36, p45, p41, p61, p57 , p34,
p38, p49, p53, p46, p42, p62, p5i, p55, p44, p40, p60, p56, p35, p39, p54 := p39;
CYCLE E 31 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p3 6 , p45, p41, p6l, p5 7 , p34,
p38, p49, p53, p46, p42, p62, p51, p55, p44, p40, p60, p56, p35, p39, p54 := p50;
CYCLE [32 1

p58, p33, p37, p48, p52, p47, p43, p63, p59, p32, p36, p45, p41, p61, p57, p34,
p38, p49, p53, p46, p42, p62, p5l, p55, p44, p40, p60, p56, p35, p39, p50 := p54;

I
I
I
I
I
U
I
I

I
64

8. Appendices

i 8.1. C Program Library

8.2. FORTRAN Program Library

8.3. Pascal Program Library

i 8.4. PL/M Program Library

8.5. Sample ACSL files

I
I
i
I
I
i
I
I
I
I
I
I
i

